Given a square matrix, calculate the absolute difference between the sums of its diagonals.
For example, the square matrix is shown below:
1 2 3 4 5 6 9 8 9
The left-to-right diagonal = . The right to left diagonal = . Their absolute difference is .
Function description
Complete the function in the editor below.
diagonalDifference takes the following parameter:
- int arr[n][m]: an array of integers
Return
- int: the absolute diagonal difference
Input Format
The first line contains a single integer, , the number of rows and columns in the square matrix .
Each of the next lines describes a row, , and consists of space-separated integers .
Constraints
Output Format
Return the absolute difference between the sums of the matrix's two diagonals as a single integer.
Sample Input
3 11 2 4 4 5 6 10 8 -12
Sample Output
15
Explanation
The primary diagonal is:
11 5 -12
Sum across the primary diagonal: 11 + 5 - 12 = 4
The secondary diagonal is:
4 5 10
Sum across the secondary diagonal: 4 + 5 + 10 = 19
Difference: |4 - 19| = 15
#!/bin/python3
import math
import os
import random
import re
import sys
#
# Complete the 'diagonalDifference' function below.
#
# The function is expected to return an INTEGER.
# The function accepts 2D_INTEGER_ARRAY arr as parameter.
#
def diagonalDifference(arr):
# Write your code here
left_diagonal = 0
right_diagonal = 0
#print (len(arr[0]))
for i in range(len(arr)):
left_diagonal = left_diagonal + arr[i][i]
right_diagonal = right_diagonal + arr[i][len(arr)-i-1]
result = abs(left_diagonal - right_diagonal)
return result
if __name__ == '__main__':
fptr = open(os.environ['OUTPUT_PATH'], 'w')
n = int(input().strip())
arr = []
for _ in range(n):
arr.append(list(map(int, input().rstrip().split())))
result = diagonalDifference(arr)
fptr.write(str(result) + '\n')
fptr.close()
'Engineering WIKI > HackerRank' 카테고리의 다른 글
Birthday Cake Candles (0) | 2021.01.17 |
---|---|
Mini-Max Sum (0) | 2021.01.17 |
Staircase (0) | 2021.01.17 |
Plus Minus (0) | 2021.01.17 |
A Very Big Sum (0) | 2021.01.17 |
Compare the Triplets (0) | 2021.01.17 |
Simple Array Sum (0) | 2021.01.17 |
Solve Me First (0) | 2021.01.17 |